Using online textual data, principal component analysis and artificial neural networks to study business and innovation practices in technology-driven firms

نویسندگان

  • Giacomo di Tollo
  • Stoyan Tanev
  • Giacomo Liotta
  • Davide De March
چکیده

In this paper we introduce a method that combines principal component analysis, correlation analysis, K-means clustering and self organizing maps for the quantitative semantic analysis of textual data focusing on the relationship between firms’ co-creation activities, the perception of their innovation and the articulation of the attributes of their product-enabled services. Principal component analysis was used to identify the components of firms’ value co-creation activities and service value attributes; correlation analysis was used to examine the relationship between the degree of involvement in specific co-creation activities, the online articulation of firms’ service value attributes and the perception of their innovativeness. K-means and self organizing map (SOM) are used to cluster firms with regards to their involvement in co-creation and new service development, and, additionally, as complementary tools for studying the relationship between co-creation and new service development. The results show that, first, there is a statistically significant relationship between firms’ degree of involvement in co-creation activities and the degree of articulation of their service value attributes; second, the relationship should be considered within the context of firms’ innovation activities; third, OS Software-driven firms are the best example in terms of co-creation and new product-enabled service development, i.e. the collaborative principles built in their customer participation platforms should be adopted by other (non-software) firms interested in enhancing their innovation capacity through involvement in co-creation and new product-enabled service development. 2015 Elsevier B.V. All rights reserved. * Corresponding author. E-mail addresses: [email protected] (G. di Tollo), [email protected] (S. Tanev), [email protected] (G. Liotta), [email protected] (D. De March).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques

The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...

متن کامل

Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...

متن کامل

Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network

The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...

متن کامل

A business intelligence approach using web search tools and online data reduction techniques to examine the value of product-enabled services

This article summarizes the results of an empirical study focusing on the value of product-enabled services in intensive R&D spenders. The focus is on product-driven firms for which new service development is expected to be particularly promising but also quite challenging. Part of the motivation is based on the fact that existing studies on the value attributes of hybrid offerings are mostly c...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in Industry

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2015